AUGMENTING THE "PHONOLOGICAL BRIDGE": THE ROLE OF AI- POWERED FEEDBACK IN SINGING ARTICULATION FOR EARLY SPEECH DEVELOPMENT
AUGMENTING THE "PHONOLOGICAL BRIDGE": THE ROLE OF AI- POWERED FEEDBACK IN SINGING ARTICULATION FOR EARLY SPEECH DEVELOPMENT
DOI:
https://doi.org/10.56107/ijpa.v4i2.266Keywords:
Artificial Intelligence (AI), Human-AI Collaboration, Speech Development, Early Childhood Education, Singing Articulation, Educational EquityAbstract
Individualized speech support in diverse early childhood classrooms is a significant pedagogical
challenge, often creating learning disparities. While effective, the scalability of arts-based interventions like the "Phonological Bridge" model is limited by an educator's capacity for one-on- one feedback. This conceptual paper explores, through a literature review, how Artificial Intelligence (AI) can serve as a "pedagogical amplifier" to address this issue. Synthesizing research from computational linguistics, human-computer interaction, and arts-based pedagogy, we propose a model of human-AI collaboration. This framework posits that AI's primary role is not to replace the educator, but to augment their capabilities. The literature suggests AI can automate pronunciation assessment, delivering personalized and immediate feedback to each child at scale. This process generates objective data that empowers teachers to shift from intuitive observation to data-informed intervention, freeing them to focus on higher-order tasks like fostering emotional connection and creativity. We conclude that this collaborative model represents a paradigm shift, recasting the teacher's role from a sole instructor to a designer of enriched learning ecosystems. Its primary implication is the potential to democratize access to high-quality speech practice, promoting greater equity in foundational language skills for the AI era..
References
Clayton, F. J., West, G., Sears, C., Hulme, C, & Arne, L. (2020). A Longitudinal Study of Early Reading
Development: Letter-Sound Knowledge, Phoneme Awareness and RAN, but Not Letter-Sound
Integration, Predict Variations in Reading Development. SCIENTIFIC STUDIES OF READING,
(2), 91-107. doi:https://doi.org/10.1080/10888438.2019.1622546
Gariibay, O. O., Winslow, B., Andolina, S., Antona, M., Bodenschatz, A., & Coursaris, C. (2023). Six Human-
Centered Artificial Intelligence Grand Challenges. INTERNATIONAL JOURNAL OF HUMAN–
COMPUTER INTERACTION, 39(2), 391-437. doi:https://doi.org/10.1080/10447318.2022.2153320
Maulana, M. R., & Wahyudi, M. (2025). Eksplorasi Pengalaman Belajar Melalui Media Flashcard dalam
Mengembangkan Daya Baca Anak Usia Dini. JOECES, 4(2), 423-465.
doi:https://doi.org/10.54180/joeces.2024.4.2.423-465
Waruwu, M., Pu'at, S. N., Utami, P. R., Yanti, E., & Rusydiana. (2025, Februari). Metode Penelitian
Kuantitatif: Konsep, Jenis, Tahapan dan Kelebihan. Jurnal Ilmiah Profesi Pendidikan, 10(1), 917-932.
doi:https://doi.org/10.29303/jipp.v10i1.3057
Wijaya, H. (2024, Desember). Teknologi Pengenalan Suara tentang Metode, Bahasa dan Tantangan:
Systematic Literature Review. Bit-Tech (Binary Digital - Technology), 7(2), 533-544. doi:doi:
32877/bt.v7i2.1888
Spaho, E., Cico, B., & Shabina, I. (2025). IoT Integration Approaches into Personalized Online Learning:
Systematic Review. Computers, 14(63), 1-39. doi:https://doi.org/10.3390/computers14020063
Mukhyi, M. A. (2023). Metodologi Penelitian Panduan Praktis Penelitian yang Efektif. Malang: Literasi
Nusantara Abadi Grup.
Wibowo, A. (2024). Literasi Digital. Semarang: Yayasan Prima Agus Teknik bekerja sama dengan Universitas
Sains & Teknologi Komputer (Universitas STEKOM).
Government/Other reference
UNICEF Indonesia. (2023). Kemajuan tujuan pembangunan berkelanjutan: Fokus anak-anak di Indonesia:
Analisis situasi terkini dan rekomendasi kebijakan. Jakarta: BAPPENAS dan UNICEF. Retrieved from
https://www.unicef.org/indonesia/id/media/22876/file/kemajuan-SDGs-fokus-anak.pdf














